13 research outputs found

    Organs on chip approach: A tool to evaluate cancer-immune cells interactions

    Get PDF
    In this paper we discuss the applicability of numerical descriptors and statistical physics concepts to characterize complex biological systems observed at microscopic level through organ on chip approach. To this end, we employ data collected on a micro uidic platform in which leukocytes can move through suitably built channels toward their target. Leukocyte behavior is recorded by standard time lapse imaging. In particular, we analyze three groups of human peripheral blood mononuclear cells (PBMC): heterozygous mutants (in which only one copy of the FPR1 gene is normal), homozygous mutants (in which both alleles encoding FPR1 are loss-of-function variants) and cells from ‘wild type’ donors (with normal expression of FPR1). We characterize the migration of these cells providing a quantitative con rmation of the essential role of FPR1 in cancer chemotherapy response. Indeed wild type PBMC perform biased random walks toward chemotherapy-treated cancer cells establishing persistent interactions with them. Conversely, heterozygous mutants present a weaker bias in their motion and homozygous mutants perform rather uncorrelated random walks, both failing to engage with their targets. We next focus on wild type cells and study the interactions of leukocytes with cancerous cells developing a novel heuristic procedure, inspired by Lyapunov stability in dynamical systems

    3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells

    Get PDF
    Immunotherapy efficacy relies on the crosstalk within the tumor microenvironment between cancer and dendritic cells (DCs) resulting in the induction of a potent and effective antitumor response. DCs have the specific role of recognizing cancer cells, taking up tumor antigens (Ags) and then migrating to lymph nodes for Ag (cross)-presentation to naïve T cells. Interferon-α-conditioned DCs (IFN-DCs) exhibit marked phagocytic activity and the special ability of inducing Ag-specific T-cell response. Here, we have developed a novel microfluidic platform recreating tightly interconnected cancer and immune systems with specific 3D environmental properties, for tracking human DC behaviour toward tumor cells. By combining our microfluidic platform with advanced microscopy and a revised cell tracking analysis algorithm, it was possible to evaluate the guided efficient motion of IFN-DCs toward drug-treated cancer cells and the succeeding phagocytosis events. Overall, this platform allowed the dissection of IFN-DC-cancer cell interactions within 3D tumor spaces, with the discovery of major underlying factors such as CXCR4 involvement and underscored its potential as an innovative tool to assess the efficacy of immunotherapeutic approaches

    The spectral treasure house of miniaturized instruments for food safety, quality and authenticity applications : A perspective

    No full text
    Background: Optical technologies, relying on spectral analysis, are more and more implemented in portable devices for food analysis. Thereby, each food safety, quality or authenticity provision as well as each technology requires the generation of a dedicated spectral database with reference data. Currently, knowledge on how these databases might be connected or transferred across food commodities, targeted compounds or devices are very limited. Hence, repetitive work is conducted and technologies are not optimally used. Scope and approach: This perspective focuses on the currently available technologies and approaches for data handling and database transfer across miniaturized devices and technologies for food safety, quality and authenticity assessments. Key findings and conclusions: For almost every food commodity or target compound a miniaturized spectroscopic device can be applied with the respective database to compare findings. Recent developments in optical spectroscopy allow more possibilities for their use as well as facilitate the production of portable devices. A multifunctional device hyphenating several sensors and broadening the application range is still not marketed. Newly developed software architecture, accessing and extracting data, helps to overcome sample heterogenicity or spurious measured data. In addition, several data fusion approaches using machine learning and deep learning strategies are available to fuse spectroscopic data with itself or other non-spectroscopic data. Following the research results presented in this field, spectral data can possibly be re-used and shared across instruments and locations, highly increasing the applicability of data sets. Thereby, obstacles such as policy or confidentiality are taken into account.</p

    Detailing the role of Bax translocation, cytochrome c release, and perinuclear clustering of the mitochondria in the killing of HeLa cells by TNF

    No full text
    Induction of cell death in HeLa cells with TNF and cycloheximide (CHX) required an adequate ATP supply and was accompanied by decrease in intracellular pH, translocation of Bax, perinuclear clustering of the mitochondria, and cytochrome c release. The chloride channel inhibitor furosemide prevented the intracellular acidification, the tranflocation of Bax and the cell death. Cyclosporin A (CyA) or bongkrekic acid (BK) inhibited the induction of the MPT, the release of cytochrome c and the cell death without affecting the perinuclear clustering of the mitochondria or the translocation of Bax. Energy depletion with the ATP synthase inhibitor oligomycin or the uncoupler FCCP in the presence of 2-deoxy-glucose prevented the perinuclear clustering of the mitochondria and the cell killing. However, mitochondrial translocation of Bax was still observed. By contrast, cytochrome c was released in the oligomycin-treated cells but not in the same cells treated with FCCP. The data demonstrate that apoptosis in HeLa cells is ATP dependent and requires the translocation of Bax. The movement of Bax to the mitochondria occurs before and during the perinuclear clustering of these organelles and does not require the presence of ATP. The release of cytochrome c depends on the induction of the mitochondrial permeability transition but not ATP content

    Interdisciplinary approach to cell–biomaterial interactions: biocompatibility and cell friendly characteristics of RKKP glass–ceramic coatings on titanium

    No full text
    In this work, titanium (Ti) supports have been coated with glass–ceramic films for possible applications as biomedical implant materials in regenerative medicine. For the film preparation, a pulsed laser deposition (PLD) technique has been applied. The RKKP glass–ceramic material, used for coating deposition, was a sol–gel derived target of the following composition: Ca-19.4, P-4.6, Si-17.2, O-43.5, Na-1.7, Mg-1.3, F-7.2, K-0.2, La-0.8, Ta-4.1 (all in wt%). The prepared coatings were compact and uniform, characterised by a nanometric average surface roughness. The biocompatibility and cell-friendly properties of the RKKP glass–ceramic material have been tested. Cell metabolic activity and proliferation of human colon carcinoma CaCo-2 cells seeded on RKKP films showed the same exponential trend found in the control plastic substrates. By the phalloidin fluorescence analysis, no significant modifications in the actin distribution were revealed in cells grown on RKKP films. Moreover, in these cells a high mRNA expression of markers involved in protein synthesis, proliferation and differentiation, such as villin (VIL1), alkaline phosphatase (ALP1), β-actin (β-ACT), Ki67 and RPL34, was recorded. In conclusion, the findings, for the first time, demonstrated that the RKKP glass–ceramic material allows the adhesion, growth and differentiation of the CaCo-2 cell line

    A photonic smart system for food quality and safety sensing: First integration and measurement results: Poster presented at 43rd International Conference on Micro- and Nanoengineering, MNE 2017, 18th - 22nd September 2017, Braga, Portugal

    No full text
    The food safety issue is among the cornerstones of the environmental protection schemes worldwide and beside hazard issues, there is great concern about monitoring of food spoilage in a reliable way. Current practices of assessment of food spoilage still relies heavily on regulatory inspection and sampling regimes. A portable photonic multisensor device for the detection of food contaminations, spoilage and fraud is the objective of the EU PhasmaFOOD project. It will integrate different capabilities: spectroscopic detection (VIS/NIR), imaging, smart signal processing, data analysis and comparison with updated models on cloud platform hosting data set for training and calibration of food analysis algorithms, user friendly interfaces by smartphone/tablet/PC also through wireless connection

    Organ-on-chip model shows that ATP release through connexin hemichannels drives spontaneous Ca2+ signaling in non-sensory cells of the greater epithelial ridge in the developing cochlea

    No full text
    Prior work supports the hypothesis that ATP release through connexin hemichannels drives spontaneous Ca2+ signaling in non-sensory cells of the greater epithelial ridge (GER) in the developing cochlea; however, direct proof is lacking. To address this issue, we plated cochlear organotypic cultures (COCs) and whole cell-based biosensors with nM ATP sensitivity (ATP-WCBs) at the bottom and top of an ad hoc designed transparent microfluidic chamber, respectively. By performing dual multiphoton Ca2+ imaging, we monitored the propagation of intercellular Ca2+ waves in the GER of COCs and ATP-dependent Ca2+ responses in overlying ATP-WCBs. Ca2+ signals in both COCs and ATP-WCBs were inhibited by supplementing the extracellular medium with ATP diphosphohydrolase (apyrase). Spontaneous Ca2+ signals were strongly depressed in the presence of Gjb6-/- COCs, in which connexin 30 (Cx30) is absent and connexin 26 (Cx26) is strongly downregulated. In contrast, spontaneous Ca2+ signals were not affected by replacement of Panx1-/- with Panx1+/+ COCs in the microfluidic chamber. Similar results were obtained by estimating ATP release from COCs using a classical luciferin-luciferase bioluminescence assay. Therefore, connexin hemichannels and not pannexin 1 channels mediate the release of ATP that is responsible for Ca2+ wave propagation in the developing mouse cochlea. The technological advances presented here have the potential to shed light on a plethora of unrelated open issues that involve paracrine signaling in physiology and pathology and cannot be addressed with standard methods

    Dissecting Effects of Anti-cancer Drugs and Cancer-Associated Fibroblasts by On-Chip Reconstitution of Immunocompetent Tumor Microenvironments

    Get PDF
    Summary: A major challenge in cancer research is the complexity of the tumor microenvironment, which includes the host immunological setting. Inspired by the emerging technology of organ-on-chip, we achieved 3D co-cultures in microfluidic devices (integrating four cell populations: cancer, immune, endothelial, and fibroblasts) to reconstitute ex vivo a human tumor ecosystem (HER2+ breast cancer). We visualized and quantified the complex dynamics of this tumor-on-chip, in the absence or in the presence of the drug trastuzumab (Herceptin), a targeted antibody therapy directed against the HER2 receptor. We uncovered the capacity of the drug trastuzumab to specifically promote long cancer-immune interactions (>50 min), recapitulating an anti-tumoral ADCC (antibody-dependent cell-mediated cytotoxicity) immune response. Cancer-associated fibroblasts (CAFs) antagonized the effects of trastuzumab. These observations constitute a proof of concept that tumors-on-chip are powerful platforms to study ex vivo immunocompetent tumor microenvironments, to characterize ecosystem-level drug responses, and to dissect the roles of stromal components. : Inspired by the emerging technology of tumor-on-chip, Nguyen et al. reconstituted ex vivo a human tumor microenvironment (HER2+ breast cancer), characterized the ecosystem-level responses to the drug trastuzumab (Herceptin), and dissected the roles of stromal components (immune cells and fibroblasts), demonstrating the power of immunocompetent tumors-on-chip for preclinical drug studies. Keywords: tumor microenvironment, organ-on-chip, tumor-on-chip, trastuzumab, HER2+ breast cancer, cancer-associated fibroblasts, live cell imaging, microfluidics, pre-clinical models, immunotherap
    corecore